

Subscriber access provided by ISTANBUL TEKNIK UNIV

Hortiamide, a New Tyramine Alkaloid from Hortia regia

Winston F. Tinto, Stewart McLean, and William F. Reynolds

J. Nat. Prod., **1992**, 55 (11), 1676-1678• DOI: 10.1021/np50089a019 • Publication Date (Web): 01 July 2004

Downloaded from http://pubs.acs.org on April 4, 2009

More About This Article

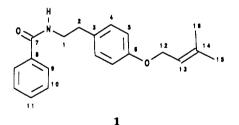
The permalink http://dx.doi.org/10.1021/np50089a019 provides access to:

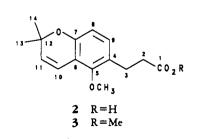
- Links to articles and content related to this article
- Copyright permission to reproduce figures and/or text from this article

HORTIAMIDE, A NEW TYRAMINE ALKALOID FROM HORTIA REGIA

WINSTON F. TINTO,^{*,1}

Centre for Natural Products Chemistry, University of Guyana, Georgetown, Guyana


STEWART MCLEAN, and WILLIAM F. REYNOLDS


Department of Chemistry, University of Toronto, Toronto, Canada, M5S 1A1

ABSTRACT.—A new tyramine derivative, hortiamide [1], was isolated from the roots of *Hortia regia*. The structure was determined from a series of 2D nmr experiments.

Hortia regia Vand. (Rutaceae) has previously afforded a number of terpenoid and alkaloidal constituents (1-4). In a further investigation of this plant, we describe here the isolation and structural elucidation of a new tyramine derivative, designated hortiamide [1], along with 5methoxy-2,2-dimethyl-1-2H-benzopyran-6-propanoic acid [2], isolated for the first time as the free acid.

Hortiamide was isolated as colorless crystals, mp 109–111°, and had the molecular formula $C_{20}H_{23}O_2N$ on the basis of hrms. The ir spectrum had absorptions due to a secondary amide (3356 and 1642

¹Present address: Department of Chemistry, University of the West Indies, Cave Hill Campus, Bridgetown, Barbados.

cm⁻¹), while the uv spectrum had absorbances characteristic of an aromatic chromophore. The ¹H- and ¹³C-nmr spectra revealed the presence of a 1,4-disubstituted benzene ring, a benzoyl group, and a dimethylallyl moiety.

A standard HETCOR experiment was used to determine connectivity between carbons and their directly bonded protons, while the FLOCK pulse sequence (5) was used to establish 2- and 3-bond correlations. In the FLOCK spectrum, the amide carbon at $\delta 167.43$ displayed 3bond correlation with the ortho protons of the benzoyl group at δ 7.69 (δ , 126.80), while an oxymethylene carbon at δ 64.77 had cross peaks with an olefinic proton at δ 5.49. Further, both olefinic carbons had long-range correlations with the two Me groups. The results of these experiments (Table 1) led to the assignment of the structure 1 for hortiamide.

Compound 2, mp 108–109°, had ir absorptions characteristic of carboxylic and aromatic functionalities. The ¹Hand ¹³C-nmr spectra suggested that it was the chromene acid, 5-methoxy-2,2dimethyl-1-2H-benzopyran-6-propanoic acid; the methyl ester 3 was previously isolated from this same plant (2). Methylation of compound 2 gave a product that was identical to 3 in all respects (2).

EXPERIMENTAL

GENERAL EXPERIMENTAL PROCEDURES.— Mp's were taken on a Kofler hot stage apparatus and are uncorrected. Uv spectra were obtained on a Cary 14UV spectrophotometer. Ir spectra were obtained on a Nicolet 3DX FTIR spectrometer in

Position	δ _c	δ _Η	2- or 3-bond connectivity
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 NH 10	41.29 34.78 130.76 129.72 114.86 157.60 167.43 134.67 126.80 128.54 131.36 64.77 119.66 138.20 25.84 18.20	3.68 (6.9, 1.0) 2.87 (6.9) 	2.87 7.14, 3.68 7.14, 6.88, 2.87 7.14, 6.88, 2.87 6.88 7.14, 6.88, 2.87 6.88 7.14, 6.88, 4.49 7.69 7.40 7.69, 7.48, 7.40 7.69, 7.40 7.69, 7.40 5.49 4.49, 1.80, 1.74 1.80, 1.74, 4.49 4.49, 1.74 1.80

TABLE 1. Nmr Characteristics of Hortiamide [1] in CDCl₃.⁴

⁴ Assignments are based on COSY (200 MHz), HETCOR (200 MHz), and FLOCK (400
MHz) experiments. Values in parentheses are coupling constants in Hz.

CHCl₃ solutions. The nmr spectra were recorded on a Varian XL–200 or XL–400 spectrometer in CDCl₃ solutions with TMS as an internal standard. A VG 70–250S mass spectrometer operating at 70 eV was used to obtain ms.

PLANT MATERIAL.—*H. regia* was collected in the forest west of the Mahaica river, Demerara, Guyana in November 1987. Voucher specimens are deposited in the Herbarium of the University of Guyana.

EXTRACTION AND ISOLATION.—The dried, ground roots (3.75 kg) were extracted with 95% EtOH (14 liters), and the resulting extract was taken up in CHCl₃. The CHCl₃-soluble material (76.8 g) was chromatographed on Si gel using 20% EtOAc in hexane as eluent to give the chromene acid **2** (318 mg) and hortiamide [**1**] (175 mg).

Hortiamide [1].—Mp 109–111°; ir 3356, 1642, 1610, 1579, 1537, 1509 cm⁻¹; uv (MeOH) 214 nmr (ϵ 1200) and 230 nm (ϵ 1900); ¹H and ¹³C nmr see Table 1; eims m/z [M]⁺ 309(2%), 241(15), 188(4), 134(6), 120(100), 105(50), 77(27), 69(27); hrcims (isobutane) 310.1810 (calcd for C₂₀H₂₄O₂N [MH]⁺ 310.1807).

5-Metboxy-2.2-dimetbyl-1-2H-benzopyran-6propanoic acid [2].—Mp 108–109°; ir 3430–2000 (br), 1714, 1636, 1602 cm⁻¹; ¹H nmr δ 11.47 (CO₂H), 6.93 (1H, d, 8.4 Hz, H-8), 6.57 (1H, d, 10.0 Hz, H-10), 6.53 (1H, d, 8.4 Hz, H-9), 5.64 (1H, d, 10.0 Hz, H-11), 3.75 (3H, s, OMe), 2.88 (2H, t, 7.3 Hz, H-3), 2.65 (2H, t, 7.3 Hz, H-2), 1.42 (6H, s, CMe₂); ¹³C nmr δ 179.9 (C-1), 154.4 (C-6), 152.8 (C-7), 130.6 (C-11), 129.5 (C-6), 124.9 (C-4), 117.3 (C-10), 114.9 (C-8), 112.4 (C-5), 76.0 (C-12), 61.9 (OMe), 34.8 (C-2), 27.5 (C-13 and C-14), 24.5 (C-3) eims *m*/z [M]⁺ 262 (21%), 247(100), 187(26), 173(23), 159(5), 145(7), 128(9), 115(11); hreims 262.1211 (calcd for C₁₅H₁₈O₄, 262.1205).

Compound 2(25 mg) was treated with excess ethereal CH₂N₂ to give the methyl ester **3**, identical with an authentic sample (¹H nmr, ¹³C nmr, and co-tlc).

ACKNOWLEDGMENTS

The Centre at the University of Guyana is grateful for generous support from the Canadian International Development Agency. The research in the Toronto laboratory was supported by grants from the Natural Sciences and Engineering Research Council of Canada.

LITERATURE CITED

- 1. H. Jacobs, F. Ramdayal, W.F. Reynolds, and S. McLean, *Tetrabedron Lett.*, **27**, 1453 (1986).
- H. Jacobs, F. Ramdayal, W.F. Reynolds, J. Poplawski, and S. McLean, *Can. J. Chem.*, 64, 580 (1986).
- H. Jacobs, F. Ramdayal, S. McLean, M. Perpick-Dumont, F. Puzzuoli, and W.F. Reynolds, J. Nat. Prod., 50, 507 (1987).

- 4. S. McLean, M. Perpick-Dumont, W.F. Reynolds, J.F. Sawyer, H. Jacobs, and F. Ramdayal, J. Am. Chem. Soc. 110, 5339 (1988).
- 5. W.F. Reynolds, S. McLean, M. Perpick-Dumont, and R.G. Enriquez, Magn. Reson. Chem.. 27, 162 (1989).

Received 27 April 1992